Exploration of Memory and Cluster Modes 1n
Directory-Based Many-Core CMPs

Subodha Charles

University of Florida
Gainesville, FL, USA

charles@cise.ufl.edu

Chetan Arvind Patil
Arizona State University
Tempe, AZ, USA
chetanpatil@asu.edu

Abstract—Networks-on-chip have become the standard inter-
connect solution to address the communication requirements of
many-core chip multiprocessors. It is well-known that network
performance and power consumption depend critically on the
traffic load. The network traffic itself is a function of not
only the application, but also the cache coherence protocol, and
memory controller/directory locations. Communication between
the distributed directory to memory can introduce hotspots, since
the number of memory controllers is much smaller than the
number of cores. Therefore, it is critical to account for directory-
memory communication, and model them accurately in architec-
ture simulators. This paper analyzes the impact of directory-
memory traffic and different memory and cluster modes on
the NoC traffic and system performance. We demonstrate that
unrealistic models in a widely used multiprocessor simulator
produce misleading power and performance predictions. Finally,
we evaluate different memory and cluster modes supported by
Intel Xeon-Phi processors, and validate our models on four
different cache coherence protocols.

I. INTRODUCTION

Continuous advances in manufacturing technologies enable
integrating an increasing number of general purpose as well
as specialized processors on the same chip. For example,
Intel Xeon Phi processors, code-named “Knight’s Landing”
(KNL), feature 64-72 Atom cores and 144 vector processing
units [1]. A larger number of cores can be exploited only
if each core has fast and high bandwidth access to memory.
Therefore, a low-latency network-on-chip (NoC) interconnects
the cores with each other and a suite of integrated memory
controllers (MC), which provide interfaces to multi-channel
DRAM (MCDRAM) and main memory (DDR) [2]-[4].

Modern chip multiprocessor (CMP) architectures commonly
employ directory-based cache coherence protocols and multi-
ple levels of cache. The first and second level caches (L1 and
L2) are collocated with each core, while the last level cache
(LLC) and tag directory are distributed throughout the chip,
as illustrated in Figure 1. An L2 miss triggers a request to
the directory that keeps track of the corresponding memory
address. In case of a hit, the data is returned from (or written
to) the LLC slice collocated with the directory. Otherwise,
the request is forwarded to one of the MCs. Due to pin
limitations and packaging constraints, the number of MCs is

This work was partially supported by the National Science Foundation
(NSF) grants CNS-1526687 and CNS-1526562.

978-1-4673-9030-9/18/$31.00 ©2018 IEEE

Prabhat Mishra
University of Florida
Gainesville, FL, USA

prabhat@ufl.edu

Umit Y. Ogras
Arizona State University
Tempe, AZ, USA
umit@asu.edu

much less than the cores. For example, Intel Xeon Phi has 8
MC:s interfacing MCDRAM and two MCs interfacing DRAM,
while the system has 72 cores [1]. Similarly, AMD Opteron
6386 SE has 16 cores with 1 MC and 4 memory channels.
Therefore, LLC-Memory communication exhibits a many-to-
few communication pattern while Core-LLC communication
is many-to-many. In other words, memory traffic is likely to
introduce hotspots, whereas Core-LLC traffic is relatively uni-
form. As a result, these hotspots and poor design choices can
cause significant performance degradation [5], as demonstrated
in our experimental results.

As an example, Intel Xeon Phi processor provides different
cluster modes that define the affinity of directories to specific
MCs due to the importance of LLC/directory to memory
traffic. In the all-to-all mode, any directory can send requests
to any MC on the chip. In contrast, quadrant mode divides
the chip into four virtual partitions, where the directories in
each partition are paired with specific controllers in their
own quadrant. As a result, the quadrant mode localizes the
traffic in an attempt to improve the memory performance.
Similarly, sub-NUMA cluster modes SNC-2 and SNC-4 divide
the processor in two and four virtual sockets, respectively. In
addition, the MCDRAM can be used as a cache (Cache mode),

| Memory Controller (MC)
0 4 8 ®
Core/L1/L2 Core/L1/L2 Core/L1/L2 fccé
(&)
te/o | RYJ e/ | R e/ | RY| £
1 5 9 %
Core/L1/L2 Core/L1/L2 Core /L1/L2 3$
LLC/TD | R|| LLC/TD | R|| LLC/TD | R
2 6 10 p
Core /L1/L2 Core/L1/L2 Core /L1/L2 C
LLC/TD | R|| LLC/TD | R|| LLC/TD | R |
3 7 11 €
Core /L1/L2 Core/L1/L2 Core /L1/L2
MC MC

Fig. 1: Representative illustration of a many-core CMP.
L1/L2: Private first and second level cache, LLC: Distributed
shared last level cache, TD: Tag directory distributed along
with LLC, PCle: PCI-express controller for I/O units, R:
Router, PCU: Power control unit.

an extension to DDR (Flat mode) or in a Hybrid mode [1],
giving three memory mode options. Each of these choices lead
to a different NoC traffic pattern as a function of the workload.

The optimum cluster and memory mode is a strong function
of the target application. Applications whose threads and mem-
ory footprint fit to a single quadrant can take advantage of the
strong locality of quadrant and sub-NUMA modes. However,
highly parallel applications with a large number of threads and
memory footprint may benefit from all-to-all and flat memory
modes. Analyzing the power consumption and performance
impact of cluster and memory modes is important for two
reasons. First, it enables us to use the existing platforms
optimally. Second, it can help in making better architectural
choices. This analysis is not feasible on existing hardware
platforms, since the traffic between the cores and memory is
not observable. Furthermore, there are no public simulators
capable of performing this exploration. For example, gem5 [6],
which is one of the most widely used architecture simulators,
assumes that there is an interface from each tile to the main
memory. Consequently, the memory access latency is modeled,
but the actual traffic from LLC/directory to memory is not
captured. This makes the default gem5 model unsuitable for
cluster and memory mode exploration.

This paper analyzes the impact of cluster and memory mode
choices on the NoC traffic. We demonstrate that congestion on
the NoC links affects not only the communication latency, but
also power consumption and application execution time. We
also show that any exploration that involves LLC/directory to
memory traffic requires a simulation framework that models
the cache coherence protocols accurately. We demonstrate both
qualitatively and quantitatively that neglecting the LLC/mem-
ory traffic, as it is done in gemS5, gives highly optimistic results
in terms of the network load, latency and power consumption.
We also show that this inaccuracy can lead to misleading
conclusions in terms of optimal MC placement. Then, we
describe how the LLC/directory to memory traffic, originating
from directory-based cache coherence, can be modeled in
architectural simulators. Using the corrected gem5 model, we
evaluate the power consumption and performance impact of
quadrant and all-to-all cluster modes together with cache and
flat memory modes which configure the directory-MC affinity.

The major contributions of this paper are as follows:

e We demonstrate the importance of modeling the
directory-memory traffic, and show that considering only
core to directory traffic gives highly optimistic results.

e We describe how to accurately model the LLC/directory
to memory traffic, and contrast it with the assumption
adopted in gem5 [6] full system simulator.

o« We explore speed-up achieved by different cluster and
memory modes supported by the state-of-the-art CMPs
using the enhanced version of gem5. We confirm that
the trends are the same with those obtained on the real
platform.

« We demonstrate the impact of this work on four different
cache coherence protocols.

The rest of the paper is organized as follows. Section II
presents related work on NoC design and exploration. Section
IIT gives a background on memory and cluster modes. Section
IV presents our NoC modeling and exploration framework.
Section V presents the experimental results. Finally, Section
VI concludes the paper.

II. RELATED WORK

Prior work on traffic exploration on NoC and optimization
motivates the need for better memory and processor placement
to reduce contention and latency. Early work in this area
suggests the efficient distribution of memory traffic to provide
quality-of-service guarantees [7]. Abts et al. [5] tackle the
problem of optimum MC placement where m cores need to be
placed with n MCs. The placement is decided by examining
the variation in latency experienced by cores to access each
MC. “Diamond” placement is found to be the best for an
8x8 mesh with 16 MCs, while further improvements are
achieved by introducing a class-based deterministic routing
algorithm. Xu et al. [8] leverage this idea to find an optimal
placement for the same configuration. The minimum number
of MCs and their placement required to achieve a given
performance goal was explored by taking Intel SCC [9] as
a case study [10]. Once the number of MCs are decided and
placed, it creates opportunity for optimization by dynamically
mapping workload data to appropriate MCs [11].

The effect of modeling the main memory access through the
directory was discussed by Duraisamy et al. [12]. They explore
the traffic patterns of two-level MESI directory protocol and
AMD’s Hammer-based HyperTransport (HT) [13] protocol
to design an efficient multicast aware wireless NoC. Ros et
al. analyzed area and traffic trade-offs associated with cache
coherence protocols [14]. To optimize power and performance,
Schuchhardt et al. [15] propose a method to place directories
closer to their shared data and thereby eliminating many
network traversals. Other coherence traffic-based optimization
techniques include coherence protocol deactivation for private
block accesses to reduce directory accesses [16], and a bloom
filter mechanism for tagless coherence directory [17].

In contrast to our work, none of the prior studies rigorously
explore the affinity between PE, MC and directory in a system
running directory-based cache coherence and optimization
with different cluster and memory modes. As shown in our
experimental results, the conclusions of the optimum MC
placement study by Abts et al. [5] and Xu et al. [8] are
no longer valid, when the LLC/directory to MC traffic is
considered. Hence, our proposed correction is vital and crucial
for emerging NoCs with wireless [12], optical [18] and 3D
networks [19].

III. MEMORY AND CLUSTER MODES IN MODERN CMPs

A. Memory Modes in Xeon-Phi Architecture

Xeon-Phi architectures have a high-bandwidth MCDRAM
memory and a larger low-bandwidth DDR memory [1]. These
two memory types can be configured at boot time in different
ways, as illustrated in Figure 2.

o Flat Mode: In the flat mode, both the MCDRAM and
DDR memory are mapped in the same system address
space. This mode is ideal for applications with data
that can be separated into categories of a larger, low-
bandwidth region, and a smaller, high-bandwidth region.

e Cache Mode: In the cache mode, MCDRAM acts as
a last level cache which is placed in between the DDR
memory and L2 cache. The cache is direct mapped with
a cache line size of 64-bytes. All memory requests first
go to the MCDRAM for a cache memory lookup, if there
is a cache miss, they are sent to the DDR memory.

o Hybrid Mode: In the hybrid mode, part of MCDRAM
(half or quarter) is used in cache mode while the rest
is used as flat mode memory. The DDR memory will be
served by the cache portion. This works well for a variety
of applications that take advantage of storing frequently
accessed data in flar memory while also benefiting from
regular caching.

Flat Mode Cache Mode Hybrid Mode
15 8 GB or
MCDRAM 12 GB
P MCDRAM
o a
] 2
3 3
2 ece 8GBor 2
2 @
DDR 2 MCDRAM DDR 4GB DDR 2
Z MCDRAM g
& £

Fig. 2: Three memory modes in Xeon-Phi architectures [1].

B. Cluster Modes in Xeon-Phi Architecture

The mesh interconnect in KNL supports three cluster modes,
which have significant impact on the NoC traffic behavior [1].
Similar to memory modes, cluster modes can also be selected
from BIOS during boot time.

o All-to-all mode: In this mode, there is no affinity between
the processing element (PE), MC and directory. That is,
a memory request can go from any directory to any MC.
As a result, this mode does not exploit locality, unlike
the other two cluster modes.

e Quadrant mode: In the quadrant mode, the chip is
divided into four quadrants. There is an affinity between
the directories and MC in the same quadrant. However,
there is no affinity between the PE and directory, i.e, a
processor can send the memory request to any directory,
but the directory will always forward that request to an
MC on the same quadrant.

e Sub-NUMA mode: This mode takes one more step for-
ward by enforcing affinity between all three components
- PE, MC and directory. A request from a PE lands on
a directory on the same quadrant, and the directory can
forward that request to an MC on the same quadrant.

The optimal combination of memory and cluster modes
depends on the application characteristics and, largely affects
the power and performance statistics.

Figure 3 illustrates the traffic flow of these memory and
cluster modes using examples. The quadrant and sub-NUMA

clustering modes improve the locality of memory traffic. For
instance, Figure 3c illustrates the quadrant mode in KNL [1].
The initial request from a core can go to any directory (1).
However, each directory is associated with the MCs within the
same quadrant. The memory request marked with (2) can go
to integrated MC on the right side or to MCDRAM controllers
at the upper right corner. This affinity helps in localizing
the directory-memory traffic, which in turn improves memory
access latency.

IV. ACCURATE MODELING OF LLC/DIRECTORY TO
MEMORY COMMUNICATION

In this section, we first describe how the transactions
between core, LLC/directory and memory occur in modern
CMPs. Then, we contrast it to the assumption made by gem5
and highlight the consequences. Next, we present an accurate
NoC modeling and implementation of cluster and memory
modes in gem5. Finally, we demonstrate that our framework
is vital to accurately model and explore modern CMPs.

A. Memory Controller Placement in CMPs

Due to pin limitations and package constraints, it is unreal-
istic to attach a memory controller to each core in a CMP. For
example, Intel Core i7-900 processor has only one MC, and
27.3% of its total pins are dedicated to the MC [20]. Similarly,
the Tilera Tile64 processor integrates 64 cores in an 8x8 mesh
with four on-chip MCs [3]. This results in a core to MC ratio
of 16:1. The total number of cores and memory controllers in
several modern CMPs are summarized in Table 1.

TABLE I: Comparison of cores and number of MCs in modern
many-core CMPs.

Processor # Cores | # Memory Controllers

Intel Xeon Phi 7210 [21] 64 8 MCDRAM & 2 DDR4
Tilera Tile64 [3] 64 4 DDR2 in 16 ports
Intel Xeon 8160M 24 2 DDR4, 6 channels
AMD Opteron 6386 SE 16 1 DDR3, 4 channels

Several studies have shown that relative placement of cores
and MCs plays an important role in network traffic distribu-
tion [5], [8]. This impact is more significant in topologies, such
as 2D Mesh, which do not have edge symmetry. Thus, it is evi-
dent that connecting MCs to every tile gives a highly optimistic
estimate of the realistic scenario. Moreover, a large fraction
of traffic in a CMP originates not from actual data transfers,
but from communication between cores to maintain data
coherence [15]. As soon as the directory component comes
into play, the traffic distribution is not the same as processor
to processor traffic or processor to memory traffic. Therefore,
the affinity between the cores, directories and MCs affect
the performance of architectures that employ a distributed
directory-based cache coherence algorithm. Consequently, it
is crucial to accurately account for the communication flow
between the cores, tag directories and memory controllers.

Arguably, the most widely used architectural simulator -
gemS [6] makes an unrealistic assumption that there is an
interface to main memory from every tile of the NoC. This
eliminates the exploration of affinity between directory and

(a) Example of L2 miss in flat memory mode
and all-to-all cluster mode: (1) L2 cache
miss. Memory request injected on the net-
work to check the tag directory, (2) request
forwarded to any memory controller after
miss in tag directory, (3) data read from
memory and sent to the requester.

(b) Example of L2 and MCDRAM miss in
cache memory mode and all-to-all cluster
mode: (1) L2 cache miss. Memory request
injected on the network to check the tag di-
rectory, (2) request forwarded to MCDRAM
which acts as a cache after miss in tag
directory, (3) request forwarded to memory
after miss in MCDRAM, (4) data read from
memory and sent to the requester.

(c) Example of L2 miss in flat memory mode
and quadrant cluster mode: (1) L2 cache
miss. Memory request injected on the net-
work to check the tag directory, (2) request
forwarded to memory controller on the same
quadrant, (3) data read from memory and
sent to the requester.

Fig. 3: Traffic models in flat and cache memory modes and all-to-all and quadrant cluster modes in KNL architecture [1].

MC. Furthermore, the effects of memory modes cannot be
captured in the current gem5 setup.

B. LLC/Directory to Memory Communication in CMPs

A miss in the local cache triggers a sequence of transactions
in many-core architectures with distributed directories, as
demonstrated Figure 4a. The order of these transactions are
as follows:

1) The request is forwarded to the directory controller
which contains the memory address information,

2) If data is not available in any of the caches, the request
is forwarded to an MC,

3) The data is retrieved from the memory,

4) The MC forwards the data to the requester.

The last two steps are significant, since they introduce
many-to-few communication pattern due to the smaller number
of MCs, as summarized in Table I. As a result, they not
only increase the number of packets in flight, but also lead
to hotspots which contribute to increased latency.

C. Unrealistic Assumptions in gemS5 on LLC/Directory to
Memory Communication

gem) is one of the most popular many-core architecture
simulators [6]. Instead of following these steps given in
Section IV-B, it models the memory accesses directly from
the directory (home node) itself, as illustrated in Figure 4b.
The first step is the same as shown in Figure 4a. That is, the
request goes from the core to the tag directory responsible for
the corresponding memory address. If there is an LLC miss,
the data needs to be fetched from the memory, as expected.
However, the memory access is modeled within the home
directory (2), without explicitly modeling the traffic from the
directory to memory controller. In other words, each “directory

Requesting Core Requesting Core

N N
\ 3\ \ A
\ N \
N\ ™ — .2 3| “T—1TD 2
..-' ’
NN \ 5
—{—[mc|3
(a) (b)

Fig. 4: (a) Life cycle of a memory request and resulting
transactions in real distributed directory systems. (b) The
same transactions modeled in default gem5. We modified
gem5 to have this realistic flow. In the quadrant mode, there
is an affinity between a tag directory and the MC in that
quadrant. Our modification enables to accurately model this
architectural feature, while the default model shown in (b)
cannot differentiate the affinity.

controller” implies both a directory (i.e. state) and an MC [6].
The model accounts for the delay to main memory, but it does
not have a separate MC node in the NoC. Therefore, the NoC
traffic to and from the memory controllers is not modeled. In
contrast, the data is forwarded directly from the directory to
the requester (3). Comparing the two scenarios, we can see
that step 2 in Figure 4a does not exist in the current gem5
model. Moreover, the data (step 3) is sent from the directory,
not from the MC as in the realistic model.

Impact on NoC Trafficc The modeling choice in Fig-
ure 4(b) essentially establishes a virtual link between the tag
directory and memory controllers. Therefore, the request and
data packets to and from MCs are completely missed in this
simulation model. This affects not only the communication

latency of a given transaction but also the utilization of the
links and routers on the path. Consequently, the latency of all
the NoC traffic that goes through those routers will be lower
in simulation than their actual values. Hence, this will result
in optimistic performance estimates.

D. Modeling and Exploration of Intel Xeon-Phi architecture

An accurate NoC simulation model should explicitly capture
PE to directory, directory to memory and memory to PE traffic.

Mapping Addresses to Memory Controllers: Since all
the cores share the MCs, we need a mechanism to allocate
different address ranges to the available MCs. To achieve this,
the physical address of a memory location is mapped to an
MC according to the function shown in Listing 1. It allocates
a certain set of bits from the address to select the MC by
defining the range of bits from small to big and dividing the
addresses uniformly among MCs. In this formulation, addr is
the address to map, small is calculated as (numa_high_bit -
num_memories_bits + 1), and big is numa_high_bit. Here,
numa_high_bit and num_memories_bits are calculated de-
pending on the number of MCs. These expressions enable an
even distribution of memory addresses among the MCs, which
is similar to the decisions in a modern CMP [22].

Listing 1: Address hashing function used to map an address
to a memory controller

Addr bitSelect (Addr addr, unsigned int small,
unsigned int big)
{

assert (big >= small);

if (big >= ADDRESS_WIDTH - 1) {

return (addr >> small);
} else {
Addr mask = 7 ((Addr) 0 << (big + 1));

Addr partial = (addr & mask);
return (partial >> small);

}

Simulation Framework: We employ a cycle-accurate full-
system simulator - gem5 [6] and “GARNET2.0” [23] in-
terconnection network model. The default gem5S model is
modified to include separate MCs and to model PE to PE,
PE to directory, directory to memory as well as memory to
PE traffic. The gem5 implementation handles the traffic flow
through coherence protocols. In a distributed cache coherence
protocol, in case of a cache miss, the request is forwarded to
the coherence protocol controller. It makes the necessary state
transitions and pushes the message in the appropriate virtual
network to the network interface. The network interface then
converts the message into network packets and sends them
to the network via the connected router. The network then
routes the flits to the destination node using X-Y deterministic
routing protocol. When the home directory receives the packet,
it checks its state machine to see if another cache shares that
data. If yes, it forwards the packet to the owner and then to the
requestor (PE) and if not, it initiates a memory fetch depending
on which memory and cluster modes are being used.

If it is all-to-all and flat mode, addresses are uniformly dis-
tributed across MCDRAM and DDR memory spaces. Which
MCDRAM/DDR memory controller to forward to is decided
using the function in Listing 1. If it is quadrant and flat mode,
only MCs in that quadrant are considered as candidates for
forwarding the memory requests. In all-fo-all and cache mode,
MCDRAM space is treated as a last-level cache. Therefore, the
request is sent to an MCDRAM controller for a cache lookup.
If it is a miss, the memory request is again forwarded to the
appropriate MC (selected using Listing 1 without considering
MCDRAM controllers), and memory fetch request is placed
through there. Once the requested data is fetched from either
the DDR or MCDRAM memories, it is forwarded back to the
PE after making the necessary coherence transitions.

We explicitly differentiate the behavior of MCDRAM mem-
ory in cache and flat modes. In cache mode, MCDRAM cache
modules are instantiated and can be accessed only through
the designated MCDRAM controller locations. In flar mode,
this cache module is not used, and an MC similar to the MCs
interfacing DDR memory is connected to the designated nodes.

We emphasize that without our modification of the gem5
model, it is not possible to explore the power consumption and
performance impact of different cluster and memory modes.
The next section highlights two important aspects of our
exploration framework. Our proposed NoC model is realistic
since the power and performance numbers are comparable with
the results from the Xeon-Phi hardware board. Moreover, our
framework can be used to accurately model and explore a wide
variety of current and future NoC architectures.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Architecture Model: In our studies, we use the Intel Xeon
Phi 7210 platform [21] and model the same on gemS5 [6]. It
mainly targets high performance computing and other parallel
computing segments. The architecture offers high memory
bandwidth and massive parallelism options which enables it
to run memory and processor intensive workloads with high
throughput.

A 64-core CMP is modeled with gem5 using a mesh
topology. Each tile is composed of a core that runs at 2 GHz,
private L1 cache, tag directory and a router. Each cache is
split into data and instruction caches with 16kB capacity each.
GARNET?2.0 [23], which leverages the routing infrastructure
provided by ruby memory system, models a router with a
crossbar switch, switch allocation, virtual circuit selection
and 4 input buffers giving a 3-cycle pipeline. Each router is
connected to four other routers with internal links and to an
L1 cache and a directory controller through individual network
interfaces via external links. The complete set of simulation
parameters are summarized in Table II.

NoC Power Model: Since dynamic power consumption of
an NoC is a function of the traffic flow, we need to use an
energy model that captures the changes in the traffic flow. We
use the model in [24] to estimate the power consumption. Ac-

cording to the energy model, there are two main contributors
to NoC power;

1) Number of packets injected into the network - this is
directly related to the number of cache misses in L1
and L2 caches, and in cache memory mode, misses in
MCDRAMs.

2) Average hops traversed by packets - depends on the
relative placement of PE, MCs and directories. The
affinity between these components which are configured
using the cluster modes also contributes to the number
of hops.

We feed the output statistics from gem5 to the McPAT
power modeling framework [25]. Power consumption of other
components - caches, processor, off-chip memory and direc-
tories, are estimated using the energy models in McPAT.

TABLE II: System configuration parameters used in our
simulations.

Processor Configuration
Number of cores 64
Core frequency 2 GHz
Instruction set architecture | x86
Memory System Configuration
private, separate instruction and data
cache. Each 16kB in size.

L1 cache

Cache coherence
Memory size
Access latency

distributed directory-based protocol
4GB DDR
300 cycles

Interconnection Network Configuration

8x8 Mesh (formed by rings in rows and
columns)

X-Y deterministic

4 port, 4 input buffer router with 3 cycle
pipeline delay

1 cycle

Topology

Routing scheme
Router

Link latency

Parameters that change when implementing KNL
Number of cores 32 (in 32 tiles each with one core)

Core frequency 1.4 GHz

L1 cache private, separate instruction and data
cache. Each 32kB in size.

MCDRAM shared, direct mapped cache

Benchmarks: We use benchmarks from SPLASH?2 [26] and
MiBench [27] benchmark suites to run on gemS5.

B. Parameters used to model KNL

The number of cores in gem5 must be a power of 2.
We have 32 tiles with cores similar to KNL. However, each
tile contains a single core unlike KNL, since gem5 does not
support tiles with two cores. To match the number of cores,
we deactivate one core in each tile in our Xeon-Phi platform.
We also place the MCs to match the KNL architecture shown
in Figure 3. Moreover, we set the core frequency to 1.4 GHz
when comparing the simulation results against the hardware
measurements to match our Xeon-Phi platform frequency. The
parameters used in implementing KNL are summarized in
Table II.

C. Network traffic analysis of realistic and unrealistic models

To compare the effects of realistic (proposed approach)
and unrealistic (default gem5) models, we observe the buffer

utilization at each router as shown in Figure 5. Figure Sa
shows a 4x4 mesh where the MCs are connected to each
directory which is the default implementation of gem5. Traffic
is uniform except for the tile 0 where the PE resides (tile
numbers are as shown in Figure 1). Figure 5b shows a
realistic scenario where every other parameter is kept the same,
but MCs are connected to boundary routers. This does not
display the uniform traffic distribution as shown in Figure 5a.
Traffic patterns show hotspot columns due to MC placement
which increases latency and saturates the throughput. The 4x4
mesh and MC placement configurations used in Figure 5 are
for illustration only. Experiments are carried out using the
parameters mentioned under section V-A.

As a result of this congestion and more packets being sent
through the network, the realistic model shows a 54.9% more
network flit latency on average across FFT, FMM, RADIX
and LU benchmarks compared to the unrealistic model with
a similar topology. A comparison of network latency, NoC
power usage and execution times with different benchmarks
is shown in Figure 6. As stated before, the default gem5
model does not permit cluster mode exploration as MCs are
collocated with directories at every tile. Even then, if the
default model is used for exploration, the results in Figure 6
show that it gives highly optimistic results for NoC latencies
and power.

28% 21% 7%
44% 13% 16% 6%
15% 8% 6% 4%

7% 6% a% 3%

(a) MCs modeled at each tile.

f’:%_ 00% | 16% 9% 4%

91% 65% 9% a%
65% 15% 18% 5% 47% 33% 18% 5%
34% 9% 14% 7% 16% 26% 14% 7%
42% 24% 21% 8% 8% 41% 21% 8%
91% 60% 33% 4% 91% 62% 65% 4%
47% 20% 25% 5% 47% 16% 36% 5%
16% 16% 13% 7% 16% 9% 31% 7%
8% 16% 16% 8% 8% 7% 37% 8%

(b) MCs modeled only at places marked in blue.

Fig. 5: Buffer utilization in routers when RADIX benchmark
running on core 0. Value in each tile is normalized to the
highest buffer utilization value in the modified gem5 imple-
mentation (Figure 5b). Color coded to show the distribution
of utilization across tiles (dark green - lowest and dark red -
highest).

D. Traffic Variation with different cache coherence protocols

Another factor that effects the NoC traffic behavior is
the cache coherence protocol [28]. The default gem5 NoC
implementation already captured these variations as it correctly
implemented the PE to directory affinity. We explored the
effects of different cache coherence protocols - (1) MI, (2)
MESI Two-Level, (3) MOESI CMP Directory, (4) MOESI

m Default mKNL (all-to-all) = KNL (qudrant)

1
0.9
0.8
0.7
<ol ol ol
0.5
FFT FMM LU

Normalized network
latency

RADIX

(a) Normalized network latency.
. 1
[
2 09
o
E % 0.8
=35 07
£ os l I . .
[=]
Z 05

FFT FMM LU RADIX

(b) Normalized NoC power usage.

s 1
3 0.98
3o
Ly 0.96
2% o094
©
£ 0.92 I
2 0.9

FFT FMM LU RADIX

(c) Normalized execution time.

Fig. 6: Power and performance comparison for different mod-
els: a) Default: unrealistic gem5 model which collocates MCs
with directories at each tile. b) KNL (all-to-all): gem5 KNL
model with all-to-all cluster mode and flat memory mode.
¢) KNL (quadrant): gem5 KNL model with quadrant cluster
mode and flat memory mode.

Hammer [6]. Figure 7 shows traffic variation with different
cache coherence protocols when RADIX benchmark is running
on a 4x4 Mesh NoC. Figure 7a, show buffer utilization at
each router when MI cache coherence protocol is used with
the default gem5 implementation, which assumes a memory
interface at each tile. Similar to the observation of Figure Sa,
the traffic shows a uniform gradient across the routers without
any congestion. Figures 7b shows the same results with our
modified implementation. We observe that the patterns remain
consistent across cache coherence protocols. As evident from
Figure 7c & 7d, Figure 7e & 7f and Figure 7g & 7h pairs, this
observation remains the same across other 3 cache coherence
protocols as well. Therefore, the observations made in Section
V-C hold irrespective of the cache coherence protocol. This is
expected as our modification only affects the affinity between
directory and MC. With increased sharing in cache coherence
protocols, the traffic in NoC increases. But, the hotspot loca-
tions and the traffic distribution remain the same.

E. Network Latency Comparison for different MC placements

Xu et al. explored network traffic behavior with different
MC placements (Column 0/7, Column 2/5, Diamond, Slash
and Optimal) and concluded that the “Optimal” was best for
similar benchmarks [8]. Figure 8 shows network flit latency

8% | 38% 25% 13% o 81% 41%
40% 15% 13% 10% 44% 23% 20%
26% 13% 10% 8% 27% 26% 21% 11%
13% 10% 8% 5% | 13% 28% 28% 14%
(a) MI
(b) MI
[T8o% 3% 25% 13% . 81% 42%
39% 16% 13% 11% 44% 25% 21%
26% 13% 11% 8% 29% 28% 23% 13%
14% 11% 9% 15% 31% 33% 16%

(c) MESI Two Level
(d) MESI Two Level

8% 3e% 25% 13% 77% 39%
3% 16% 13% 11% 46% 25% 20%
29% 14% 11% 8% 30% 29% 23% | 13%
15% 12% 9% 8% | 16% 33% 34% 17%

(¢) MOESI CMP Dir.
(f) MOESI CMP Dir.

| 66% 46% 33% 18% | 83% 55%
29% 22% 21% 17% 33% 34% 32% 17%
22% 19% 18% 15% 24% 40% 37% 23%
12% 14% 3% 9% | 38% 49% 26%

(g) MOESI Hammer
(h) MOESI Hammer

Fig. 7: Buffer utilization in routers when RADIX benchmark
is running on a 4x4 Mesh with different cache coherence
protocols. The color code is similar to what is used in Figure 5.
(a), (c), (e), (g) show results with default gem5 implementation
and (b), (d), (f), (h) show the same after our modification.
The buffer utilization in each tile is normalized to the highest
value in the modified gem5 implementation for a given cache
coherence protocol.

when realistic MC placement configurations in [8] as well as
gem5S default (unrealistic) model are tested across different
benchmarks. As further evidence for the highly optimistic
nature of the default gem5 model, we can see that the latency
is significantly less when compared to realistic MC placement
models.

In contrast to the conclusion in [8], “Optimal” is no longer
the best placement, when the directory-based coherence is
introduced. The results not only depend on MC placement,
but also on PE placement and coherence protocol. Considering
only the realistic placements described in [8], Column 2/5
configuration turns out to be the best by 9.0% compared to
the worst configuration (Slash) when running BASICMATH.
Column 2/5 also beats “Optimal” by 5.3% on average across
all benchmarks. The traffic congestion caused by adjacent MCs
in Column 2/5 configuration is compensated by the reduced
hop counts, since it gives smallest average hop count.

F. Exploration of memory and cluster modes and validation
with results from the KNL hardware platform

As seen from results in Figure 8, the affinity between
the PE, MC and directory plays a major role in network
traffic behavior. To explore this further, we experimented with

B gem5 Default

1
0.9
0.8
0.7
0.6
0.5 I
0a 1 | n " [[| I

FFT FMM LU OCN RD HK BMT LPK

X C

Column 0/7 mColumn2/5 MmDiamond MSlash H Optimal

Normalized network
latency

Fig. 8: Normalized network latency with different MC place-
ments. FFT, FMM, LU, OCEAN (OCN), RADIX (RDX),
CHOLESKY (CHK) from SPLASH2, and BASICMATH
(BMT), LINPACK (LPK) from MiBench are used as bench-
marks.

different cluster and memory modes available in the KNL
architecture and validated the simulation results with Intel
Xeon Phi 7210 platform. The results for both all-to-all and
quadrant cluster modes as well as flat and cache memory
modes are shown in Figure 9. Compared to all-to-all flat mode,
all-to-all cache mode gives the highest benefit with 18.62%
less execution time on average across all benchmarks. That is
an average speedup of 1.23. The average speedup of quadrant
flat mode over all-to-all flat is small (1.013). This is mainly
because the benchmarks do not stress the platform too much
and memory access latency hinders the savings of network
flit latency. These observations are in agreement with the
Intel Xeon Phi results [1], which further justifies the accuracy
of our approach. Clearly, it is not possible to perform these
memory and cluster mode explorations without the proposed
NoC modeling framework.

o All-to-all Flat All-to-all Cache H Quadrant Flat

1
0
FFT FMM LU

RADIX
Fig. 9: Normalized execution times with KNL architecture
modeled in gem5. Baseline execution times are as follows:
FFT (2.99 seconds), FMM (0.05 seconds), LU (0.02 seconds)
and RADIX (0.18 seconds).

Normalized
execution time

VI. CONCLUSION

In this paper, we explored how the network traffic behaves
when directory-based cache coherence is introduced. The
change in traffic behavior is not captured in the widely used
gem5 simulator and thus it can lead to unrealistic conclu-
sions. This paper made three important contributions. First,
we observed that the gem5 model is faulty as it models an
MC at every tile, thus eliminating coherence traffic and also
not practical due to pin limitations. Next, we implemented
an accurate and realistic model to explore MC placement
in an 8x8 mesh with 16 MCs. Our results show that the
previous conclusions made without considering coherence
traffic are no longer valid. Our studies show that optimization
methods should not only consider MC placements, but also

PE placement and coherence protocol to come to realistic
conclusions. Finally, our experimental results demonstrated
that the affinity between MC and directory controller can be
manipulated with different cluster and memory modes such
as quadrant, all-to-all, flat and cache modes introduced in
Intel’s KNL architecture to achieve better performance and
power results. Our proposed exploration framework is vital
for emerging NoCs with wireless, optical and 3D networks.

REFERENCES

[11 A. Sodani et al., “Knights landing: Second-generation Intel Xeon Phi
product,” IEEE Micro, vol. 36, no. 2, pp. 34-46, 2016.

[2] Y. Hoskote et al., “A 5-ghz mesh interconnect for a teraflops processor,”
IEEE Micro, vol. 27, no. 5, pp. 51-61, 2007.

[3] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, no. 5, pp. 15-31, 2007.

[4] U. Y. Ogras and R. Marculescu, Modeling, analysis and optimization of
network-on-chip communication architectures. Springer, 2013.

[5] D. Abts et al., “Achieving predictable performance through better
memory controller placement in many-core cmps,” CA News, vol. 37,
no. 3, pp. 451-461, 2009.

[6] N. Binkert et al., “The gem5 simulator,” CA News, vol. 39, no. 2, pp.
1-7, 2011.

[7]1 J. W. Lee et al., “Globally-synchronized frames for guaranteed quality-
of-service in on-chip networks,” in CA News, vol. 36, no. 3, 2008, pp.
89-100.

[8] T. C. Xu et al., “Optimal memory controller placement for chip
multiprocessor,” in CODES+ISSS, 2011, pp. 217-226.

[9] J. Howard et al., “A 48-core ia-32 message-passing processor with dvfs

in 45nm cmos,” in ISSCC. IEEE, 2010, pp. 108-109.

P. Eitschberger et al., “Exploring the placement of memory controllers

on manycore processors: A case study for Intel SCC,” in MCC, 2013.

M. Awasthi et al., “Handling the problems and opportunities posed by

multiple on-chip memory controllers,” in PACT, 2010, pp. 319-330.

K. Duraisamy et al., “Multicast-aware high-performance wireless

network-on-chip architectures,” IEEE TVLSI, vol. 25, no. 3, pp. 1126—

1139, 2017.

P. Conway and B. Hughes, “The AMD Opteron northbridge architec-

ture,” IEEE Micro, vol. 27, no. 2, 2007.

A. Ros et al., “Dealing with traffic-area trade-off in direct coherence

protocols for many-core CMPs.” in APPT. Springer, 2009, pp. 11-27.

M. Schuchhardt et al., “The impact of dynamic directories on multicore

interconnects,” Computer, vol. 46, no. 10, pp. 32-39, 2013.

B. A. Cuesta et al., “Increasing the effectiveness of directory caches by

deactivating coherence for private memory blocks,” in CA News, vol. 39,

no. 3, 2011, pp. 93-104.

[17] J. Zebchuk et al., “A tagless coherence directory,” in MICRO. ACM,

2009, pp. 423-434.

S. V. R. Chittamuru et al., “Swiftnoc: a reconfigurable silicon-photonic

network with multicast-enabled channel sharing for multicore architec-

tures,” JETC, vol. 13, no. 4, p. 58, 2017.

R. Morris et al., “3D-NoC: Reconfigurable 3d photonic on-chip inter-

connect for multicores,” in /ICCD, 2012, pp. 413-418.

“http://download.intel.com/design/processor/datashts/320834.pdf,” Intel

Core 17-900 Processor.

“http://ark.intel.com/products/94033/Intel-Xeon-Phi-Processor-7210-

16GB-1_30-GHz-64-core,” Intel Xeon Phi Processor 7210.

Y. Kim et al., “Atlas: A scalable and high-performance scheduling

algorithm for multiple memory controllers,” in HPCA, 2010, pp. 1-12.

[23] N. Agarwal et al., “Garnet: A detailed on-chip network model inside a

full-system simulator,” in ISPASS. IEEE, 2009, pp. 33-42.

U. Y. Ogras et al., “Design and management of voltage-frequency island

partitioned networks-on-chip,” IEEE TVLSI, vol. 17, no. 3, 2009.

S. Li et al., “McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures,” in MICRO, 2009.

S. C. Woo et al., “The splash-2 programs: Characterization and method-

ological considerations,” in Computer Architecture, 1995.

M. R. Guthaus et al., “Mibench: A free, commercially representative

embedded benchmark suite,” in WWC, 2001.

D. Molka et al., “Cache coherence protocol and memory performance of

the intel haswell-ep architecture,” in ICPP. IEEE, 2015, pp. 739-748.

[10]
(1]

[12]

[13]
[14]
[15]

[16]

(18]

[19]
[20]
[21]

[22]

[24]
[25]
[26]
[27]

[28]

