
Proactive Thermal Management using Memory-based Computing
in Multicore Architectures

Subodha Charles, Hadi Hajimiri, Prabhat Mishra
Department of Computer and Information Science and Engineering, University of Florida, Gainesville, USA

Abstract—Reliability is a major concern in modern elec-
tronic systems due to high defect rates and large parametric
variations. A major contributor to reliability concerns is the
potential thermal violations due to increasing transistor count
coupled with the high clock rate in multicore System-on-Chip
(SoC) designs. Dynamic thermal management is widely used
to reduce the SoC temperature. Early work on using memory-
based computing has shown promising results in improving
SoC reliability when few functional units are defective or
unreliable under process-induced or thermal variations. How-
ever, there are no prior efforts to explore the effectiveness of
MBC for thermal management in multicore architectures. In
this paper, we present a novel dynamic thermal management
technique using proactive memory-based computing to reduce
the peak temperature of applications in multicore architectures.
The basic idea is to proactively transfer the profitable instruc-
tions with frequent operand pairs to memory. Experimental
results demonstrate that the proposed computing in memory
can significantly decrease the peak temperature to improve the
SoC reliability with minor impact on performance.

Keywords-Memory-based computing; Thermal management;

I. INTRODUCTION

Increasing advances of chip manufacturing technologies
have enabled the integration of more and more transistors
in a single System-on-Chip (SoC). This increased complex-
ity has led to high defect rates and device vulnerabilities
due to parametric variations [1], [2]. With the increased
demand for high performance computing and massively
parallel workloads, SoCs consume high power and as a result
have to endure high temperatures. This makes the devices
more vulnerable to parametric variations. Dynamic thermal
management (DTM) is one promising method to control
temperature of computing platforms [3].

Memory based computing (MBC) is a widely studied so-
lution for parametric variations as well as component defects
[4]. MBC works on the principal that the functionality of
execution units (EU) will be implemented by storing results
of Boolean functions in lookup tables (LUT). When a certain
component is defective or causes unreliability in the SoC,
computations will be dynamically transferred to memory.
For example, if an execution unit (ALU) is experiencing
high temperature, the operations will be done in memory and
can resume normal execution when temperature goes down
[4], [5]. Figure 1 shows how MBC can be used to control
thermal violations [6]. It compares the transient temperature
of the ALU in a conventional system (solid black line with
temperature exceeding the threshold marked in red) with

temperature of an MBC based reactive architecture (dotted
line). It is called reactive because the MBC engagement
starts when the temperature crosses the threshold. As a result
of the reactive nature, the temperature threshold is crossed
for a short time before it operates in the reliable range. In
addition, in a multi-core processor cooling down a hot core
may become difficult as neighboring cores can get hot at the
same time.

Figure 1: Example of MBC alleviating thermal violations
[6]. A system is considered safe if it doesn’t exceed the
temperature threshold.

To address this problem, proactive thermal management
is introduced to dynamically send specific instructions for
MBC to reduce stress on EUs. There are two main chal-
lenges to be addressed in proactive MBC - (i) when to start
transferring computations for MBC, (ii) what computations
to transfer. If transfer starts too early or too many compu-
tations are transferred, it will result in major performance
degradation. On the other hand, if the transfer is late or less
computations are transferred, the thermal constraints might
be violated. Figure 2 shows thermal profiles of a system
running bitcount benchmark in a traditional setup as well
as a system with proactive MBC in which all applicable
computations are sent for MBC. In the MBC setup, the peak
temperature gets reduced by 16°C, but the performance de-
grades by 34%. As a solution to the performance overheads,
MBC uses existing on-chip caches to cache computation
results as LUTs. It is important to note that MBC does
not guarantee a complete prevention of thermal violations.
MBC can be used in combination with other preventative
techniques (e.g. DVFS) if such requirement is defined in
the system design specification.

In this paper, we propose an efficient proactive thermal
management system for a multi-processor architecture that
significantly reduces peak temperature of an SoC with min-

978-1-5386-7466-6/18/$31.00 ©2018 IEEE

Figure 2: Proactive MBC for temperature management when
running bitcount benchmark [6].

imal performance overhead. Proactive thermal management
in a uniprocessor setup has been studied by Hajimiri et al.
[6]. However, there is no existing study on proactive thermal
management in a multi-core setup. Designing a dynamic
thermal management solution for multi-core processors is
more challenging compared to a single-core processor. In a
multi-core processor, neighboring cores affect each other’s
performance and temperature due to shared resources and
thermal conductivity. Our solution is optimized to reduce
the overall processor peak temperature by focusing on the
hottest core. It is important to note that it may not be
possible to access the desired execution unit temperature
as today’s multi-core processors generally only provide a
temperature sensor per core. Our approach does not rely
on the exact measured EU temperature (though it may
increase the precision and lead to better results) and can
use approximate temperature based on available sensors.

The rest of the paper is organized as follows. Section
II discusses related work. Section III provides a back-
ground on MBC based thermal management for single-
core architectures. Section IV describes our proposed multi-
core dynamic proactive thermal management methodology.
Section V presents experimental results. Finally, Section VI
concludes the paper.

II. RELATED WORK

Among the inter-operability constraints - power [7], [8],
[9], performance [10], reliability [11], temperature [12]
and security [13] faced by state-of-the-art microprocessor
design, temperature has become increasingly significant,
especially with the introduction of high performance com-
puting. Thermal-aware SoC design has experimented on
many techniques such as floor planning, microarchitectural
changes, temperature monitoring, thermal reliability/secu-
rity, and OS/compiler techniques. Our focus on this work are
the microarchitectural techniques that include DTM. These
techniques monitor the package and component temperatures

during runtime and make sure that there are no thermal
violations.

However, DTM comes at the cost of performance. Brooks
and Martonisi explored the impact of DTM techniques
on performance and proposed several countermeasures to
reduce performance loss [3]. In their work, the DTM routine
is triggered when the temperature reaches a pre-defined
threshold. After the DTM response engages, it periodically
checks if the temperature goes below the threshold and once
it does, DTM disengages and it enters normal operation.
Jung and Pedram [14] introduced a stochastic dynamic
thermal management technique that took the stochastic na-
ture of temperature variations into account. By observing
that different phases of an application can have different
frequencies without violating its timing constraints, Cochran
and Reda [15] proposed to monitor processor performance
counter readings to detect these phases and to adjust fre-
quencies accordingly to avoid thermal violations. Jayaseelan
and Mitra [16] experimented DTM techniques by tuning
architectural parameters such as instruction window size,
fetch gating level and issue width to dynamically adapt to
application requirements. Instruction-level parallelism (ILP)
throttling techniques achieve linear reduction in power, while
dynamic voltage and frequency scaling (DVFS) techniques
are able to achieve a cubic reduction in power and hence
more effective in reducing temperature [17]. However, ILP
throttling can be engaged with much lower latency than
changing clock frequency or voltage [18].

Existing reactive MBC techniques are beneficial for re-
liability and performance improvement. However, it has
few major drawbacks. Since the DTM routine is triggered
once the threshold is reached, it might violate the thermal
constraints. On the other hand, once it goes above the
threshold, to lower the temperature fast, it transfers all of the
computations to memory. This can cause significant perfor-
mance degradation as some LUT access will not be available
in the cache and hence take longer to execute. Therefore,
reactive MBC is not ideal in meeting both reliability and
performance requirements at the same time. As a solution,
the work done by Hajimiri et al. [6] applied proactive MBC
to a uniprocessor architecture to improve reliability while
minimizing performance overhead. Yet, their work didn’t
address the unique challenges in a multi-core architecture.

Coskun et al. [19] proposed an approach which predicts
the future and adjusts the job allocation on a multiprocessor
SoC to prevent peak temperature. They used an autoregres-
sive moving average method to predict the future tempera-
ture. This approach faces two limitations. First, the accuracy
of their approach depends on predictability of application’s
temperature profile which may be difficult for applications
that do not present periodic predictable temperature profile.
Second, it does not address the case where all cores run hot
tasks at the same time. Our proposed approach addresses
these concerns.

III. BACKGROUND

A. Memory Based Computing

In a processor pipeline, once the instructions are decoded,
the issue unit sends the instructions to their respective
execution units. However, if those execution units are under
thermal stress or defective, the instructions can be sent for
MBC. Typically, only certain types of instructions (addition,
multiplication etc.) support MBC. MBC is done based on
LUTs stored in main memory and performance is enhanced
using caches [5]. The operands in the instruction is used
to calculate the physical address of LUTs to access for that
particular instruction. Figure 3 shows an overview of MBC.

Figure 3: An overview of memory-based computing

Arithmetic operations, such as additions and multiplica-
tions, often involve large operands (e.g. two 32-bit or 64-
bit operands). Storing a complete table of results for these
operations using 32-bit or 64-bit operands requires large
amount of memory spaces! However, such operations can be
easily bit-sliced and hence efficiently represented in terms
of LUTs. For example, carry-select addition of two 32-bit
operands using memory based computation is shown in the
Figure 4. If one of the operands is zero, the addition is
completed in one cycle. If not, the 32-bit operands are bit-
sliced into 8-bit operands. For each set of 8-bit operands, the
addition result for both input carry zero and one is looked up
from the cache. The input carry is then used to select one of
the two results. The same operation is repeated for all the 8-
bit operands. Thus the entire addition procedure is completed
in two steps, a memory lookup and subsequent carry-select
addition using the 8-bit operand addition results. Note that
due to the commutative property of “add” (a + b = b + a),
total memory required to store all the “add” results is halved
and comes to 64KB. Considering the fact that the result
for all the sub-operands (Xi; Yi) needs to reside in the on-
chip memory, the worst-case evaluation time for two 32-bit
operands is 4 cycles. Although this evaluation time is more
than that of respective functional units, due to the fact that
most of the operations (almost half of the integer operations)
are narrow width [17], the average penalty in performance
is not significant. The exact latency of operation depends on

number of memory accesses as well as the number of cycles
required to access the memory. The later is determined by
the location of relevant LUT in the memory hierarchy.

Figure 4: Implementation of memory based addition using
carry-select addition [5].

B. Proactive MBC for Thermal Management

Hajimiri et al. [6] studied proactive thermal management
in a uniprocessor setup. It addressed two main problems;

1) What instructions to send for MBC - if all instructions
with any operand values are sent to MBC, it results in
unacceptable performance overhead. This is because,
LUT accesses for MBC can take upto 7 cycles [5].

2) When to send them - instructions should be trans-
ferred before the temperature threshold is exceeded.
However, transferring earlier than required can incur
performance penalty.

An application based decision function (Equation 1) was
implemented to decide which instructions to send for MBC.
After profiling frequency of operands for different types of
instructions, it was observed that operand distribution has
very high spatial locality in applications. Using this, the
results of the most frequent operand pairs were stored in
MBC cache which gave low latency access to LUTs. An
overview of the proposed approach is shown in Figure 5.
The issue unit first checks if the instruction type is supported
by MBC. If yes, it is sent to the decision function to decide
whether to transfer to MBC. MBC results are fetched from
main memory upon the first access and will be readily
available for subsequent accesses.

The decision function is given by;

F (i, j) =

{
1 if w ≤ i ≤ x and y ≤ j ≤ z

0, otherwise
(1)

where i and j refer to two operands and 0 ≤ {w, x, y, z} ≤
255 ∈ N are defined as bounds which can be decided to

Figure 5: Proactive memory-based computing overview

Table I: Benefit values of several decision functions with
their required cache size obtained for lucas benchmark [6].

Function Benefit Min. memory
requirement

0 ≤ i < 13 and 7 < j < 11 0.02 1kB
i mod 2 = 0 and j = 17 0.52 2kB

i = 1 or (i mod 2 = 0 and j = 20) 0.78 3kB
0 ≤ i ≤ 30 and 0 ≤ j ≤ 30 0.88 1kB

0 ≤ i < 60 0.91 15kB
i = j or (0 ≤ i ≤ 100 and 0 ≤ j ≤ 37) 0.95 4kB

fit the characteristics of each application. As the w, x, y, z
variables can take many possible values, a static profiling
approach with a benefit function (Equation 2) is defined to
find the best fit decision function for each application.

B(F) =

∑
0≤i,j≤255 F (i, j)×N(i, j)∑

0≤i,j≤255 N(i, j)
(2)

where N(i, j) is the count of instructions of the instruc-
tion/computation type being profiled (add, multiply etc.).
Increasing the boundaries can give more benefit, but it
will consume more capacity from the cache. Table I shows
benefit values of several decision functions obtained for
lucas benchmark.

IV. MULTI-CORE THERMAL MANAGEMENT

This section is organized as follows. First, we describe
the architectural aspects of memory-based computing in
multicore systems. Next, we present our dynamic thermal
management technique using MBC in multi-core architec-
tures.

A. Memory-based Computing in Multi-core Architectures

Figure 6 shows our multi-core architecture with MBC. It
has m cores with shared L2 cache, private instruction (IL1)

and data (DL1) caches [20]. L1 cache can be reconfigured by
changing its capacity, linesize and associativity. To achieve
cache reconfigurability without too much overhead, we use
the reconfigurable cache architecture proposed in [21].

As discussed in Section III, most recent LUT accesses for
MBC are cached to improve performance. MBC LUTs are
cached in both L1 and L2 caches. To accommodate space
for this, L1 and L2 caches are partitioned into two parts -
one for caching MBC LUTs and the other to cache normal
instruction/data accesses. In the example shown in Figure
6, core 1 equally divides the MBC cache space between
multiplication and addition LUTs, whereas core m allocates
more than half of the MBC cache space to add operation.

The private L1 caches, shared L2 cache as well as
the private MBC caches are partitioned using way-based
partitioning [22]. For example, in the cache set shown in
Figure 7, five ways are dedicated for the unified instruction
and data caches, two reserved for multiply LUT used for
MBC and one for addition LUT. Number of ways assigned
to each functionality is known as its partition factor. For
example, the L2 partition factor for instruction/data cache
in Figure 7 is 5.

Figure 6: Memory-based computing in multicore systems

B. Proactive Dynamic Thermal Management for Multi-core

Proactive thermal management using MBC has been stud-
ied for a uniprocessor architecture in [6]. Our approach
extends that dynamic thermal management approach to a
multi-core framework. It is important to note that a naive

Figure 7: Way-based cache partitioning example: 5 ways for
inst/data, 1-way of MBC mul, and 2 ways for MBC add.

extension of the approach proposed in [6] would not be
beneficial for multi-core systems. For example, if we apply
that approach for each core independently in a multi-core
system, it may not be optimal when we move to multi-
core framework since a hot core affect other cores and may
increase the temperature in the neighboring cores. If the peak
temperature at neighboring cores coincide with each other at
the same time it makes the situation even worse. This can be
observed based on the results shown in Figure 8. The single
core solution was utilized with 1K MBC cache for both
applications running on a 2-core processor. We observe that
bitcount’s peak temperature increases by nearly 4 degrees
when it is executed with swim benchmark compared to
running with qsort benchmark. This is due to the fact that
the swim is also a hot task that raises the temperature of
the neighboring core of the one that executes bitcount. In
addition to thermal conductivity, MBC performance for each
application running on a core is affected by applications
running on other cores since the L2 MBC cache is shared
among all cores. Choosing a large MBC cache size (4K) for
all applications results in high L2 cache misses as all cores
are competing for cache space. The prolonged L2 access
latency causes delay in execution time which indeed would
be good for reducing peak temperature. However, it may
severely impact the performance.

A major challenge is to decide on the MBC L1 cache
sizes in a way that serves both objectives:

• Reduced peak temperature
• Fastest execution time

One way to solve this problem is to dynamically adjust
the MBC L1 cache sizes based on actual core temperatures
at runtime. A Central MBC Optimizer (CMO) unit is added
to the MBC architecture that arbitrates the MBC L1 cache
sizes. The general strategy is to increase MBC L1 cache
size for cores that are reaching a peak temperature and
reducing MBC L1 cache for cores that are not experiencing
a high temperature. Deciding based on temperature alone
may not be the best approach since increasing MBC L1
size may not necessarily increase the benefit. For example,
as it can be seen for benchmark swim in Figure 9, allocating
2KB generates near maximum benefit for this benchmark

and further increasing the cache size does not increase the
benefit for this application. However, the increased cache
size for swim suggests reduction of the L1 MBC size
for other cores to prevent overloading of the L2 cache,
which adversely affects the MBC performance for other
cores. Therefore, even if swim is approaching a high peak
temperature allocating more than 2KB may not have major
effect.

In order to optimize for both objectives (reduced peak
temperature and fastest execution time), CMO uses both
runtime temperature and benefits table for each application
based on various MBC L1 cache sizes (a table similar to
the Table I that is statically profiled and available at run-
time). We formulate the multi-constraint objective function,
temperature-benefit function (TB), as:

MaximizeTB =

∑
0≤i≤#cores exp(cTi)Bi(Ci) = 1

Subject to

{
Ci ∈ {1KB, 2KB, 3KB, 4KB}∑

0≤i≤#cores Ci < A
(3)

where Ti is the current temperature at core i. Ci is the MBC
L1 cache size chosen for core i. Note that Bi(Ci) is the max-
imum benefit achievable for the application running on core
i for the chosen cache Ci. The central MBC optimizer finds
the best cache sizes for all cores by maximizing TB function
at regular intervals. The constant c tweaks how sensitive the
TB function is to temperature changes versus the benefit
function. A determines aggressiveness of the approach.
Increasing A tweaks the approach to be more aggressive
(since it results in selecting larger caches and increased
use of MBC, hence leads to reduced peak temperature and
increased execution time). Similarly, reducing A makes the
approach more conservative. CMO finds the best allocation
of memory for MBC caches for each MBC operation at
regular intervals according to the multi-constraint objective
function. The multi-objective function defined in Equation 3
can be easily implemented in hardware. Bi(Ci) values are
pre-calculated offline and stored in a small table. exp(cTi)
can be also an estimated value fetched from a pre-computed
table for various values of Ti in the feasible range. Using
a few multipliers, adders and comparators, MaximumTB
can be found. The number of these hardware elements can
vary depending on the desired quality of the solution (how
close to optimal) the CMO needs to get based on the design
decision.

V. EXPERIMENTS

A. Experimental Setup

To implement our architecture, we used the widely used
multi-core simulator - gem5 [23]. The gem5 simulator
takes an application and a set of configuration parameters

Figure 8: Transient temperature of bitcount benchmark running with qsort (top graph) and swim (bottom graph).

Figure 9: Achieved benefit for swim benchmark using vari-
ous MBC L1 cache sizes.

and outputs complete architectural statistics which can be
used to estimate power, performance and temperature. The
architecture described in Section IV was implemented in
gem5. A summary of configuration parameters are shown in
Table II. For comparison, a base cache configuration was
introduced which has 4kB capacity, 2-way set associativity
and 32B line size. The base cache configuration was selected
such that it meets the average requirements of the studied
benchmarks [21].

The gem5 output was parsed to get the proper format
and fed into the McPAT power modelling framework [24]
to estimate power consumption. HotSpot 2.0 [25] takes

the power profiles as input and estimates the temperature
of integer ALU units. We considered multi-core proces-
sors comprised of Alpha 21264 cores placed side-by-side.
Similarly, 4-core floor plan is constructed by 4 side-by-
side Alpha cores. Temperature measurements were taken
at every 50,000 CPU cycles using gem5 to generate the
ALU temperature trace. As we are using multiple simulation
frameworks sequentially, the simulations took extremely
long time to finish. As a solution, we integrated all three
simulators at source level to cut down the initialization
and data transfer times. The source-level-integrated code
drastically reduced the simulation time (15 hours reduced to
12 minutes). An overview of our experimental framework is
shown in Figure 10.

Table II: System configuration parameters.

Processor Configuration
Core frequency 500 MHz
CPU Model DerivO3CPU (out-of-oder, SMT capable) [23]

Memory System Configuration
DL1 and IL1
Caches

private, reconfigurable. size: 1kB, 2kB, 4kB, 8kB;
associativity: 1-way, 2-way, 4-way, 8-way; line
sizes ranging from 16B to 64B.

L2 Cache reconfigurable, shared cache. 128kB capacity, 16-
way associative, 32B line size

Memory capacity 256MB
L1, L2, memory
access latencies

2ns, 20ns and 200ns respectively

We used 12 benchmarks selected from MiBench [26]
(bitcount, CRC32, dijkstra, qsort, toast) and SPEC CPU [27]

(applu, lucas, mgird, parser, swim, vpr) benchmark suites.
To make the size of SPEC CPU benchmarks comparable
with MiBench, reduced (but well verified) inputs sets from
MinneSPEC [28] were used. In both the 2-core setup and
4-core setup, a benchmark is assigned to each core. Tasks
were mapped to cores such that the total execution time of
each core is comparable.

Figure 10: Overview of experimental framework

B. Results

For the multi-core scenario, we experimented various ag-
gressiveness levels where the sum of the L1 MBC cache size
is kept under certain percentage of the L2 cache (parameter
A in Equation 3). Table III shows the peak temperature and
execution time utilizing various aggressiveness levels for a
two-core processor. In MBC A10, we limit the sum of L1
MBC cache sizes, A, to a maximum of 10% of capacity
of L2 cache. Similarly, A is set to 15%, 20%, and 25%
for solutions MBC A15, MBC A20, MBC A25, respectively.
Notice that the peak temperatures for applications may be
slightly higher in multi-core scenario compared to the single-
core model. For example, the peak temperature for swim is
3.5 degrees higher in the multi-core setup (77.75 compared
to 74.19). This is due to the fact that a hot core (bitcount in
this case) may also increase it’s neighbor’s peak temperature.
In the table, we have paired the results for the two tasks that
were run on neighbors in parallel. The higher of the peak
temperature in each task set is highlighted.

As expected, when the benchmark toast is paired with
a hot task (mgrid), it’s peak temperature rises by 2.67
degrees (up to 59.98 from 57.31) since MBC is not able
to allocate resources to the colder task. MBC 25 reduces
the peak temperature for mgrid, when paired with toast
by 11.16 degrees with only 20% increased execution time.
MBC A10 only adds a mere 3% performance overhead while
reduces the peak temperature by 6.3 degrees. MBC A15 and
MBC A20 achieve 5.5 and 7.8 degrees in peak temperature

reduction with 7% and 8% performance overhead for mgrid
benchmark. Considering tasks individually, for 2-core setup,
MBC A10, MBC A15, MBC A20, and MBC A25 were able
to reduce the peak temperature by 2.1, 3.7, 4.3, and 5.2
degrees on average with performance overhead of 4%, 5%,
6%, and 12%, respectively. It is interesting to note that the
overall processor peak temperature (considering the hotter
task on the two cores) is reduced by 2.8, 4.4, 5.4, and
6.7 degrees using MBC A10, MBC A15, MBC A20, and
MBC A25 which is more reduction compared to individual
task average. This confirms that our multi-core dynamic
temperature management solution is optimized for the over-
all peak temperature. Extending our approach to 4-core
processor (Table IV), MBC A10, MBC A15, MBC A20, and
MBC A25 achieve reduction in peak temperature by 2.3, 2.7,
3.6, and 4.2 degrees on average with performance overhead
of 4%, 5%, 6%, and 12%, respectively. The overall processor
peak temperature considering all four cores is reduced by
3.7, 3.6, 5.5, and 6.0 degrees using MBC A10, MBC A15,
MBC A20, and MBC A25.

VI. CONCLUSION

We presented a proactive MBC based dynamic thermal
management system for a multi-core architecture to reduce
peak temperature of applications. The basic idea is to send
instructions with the most frequent operand values to be
computed by MBC. MBC operations would generally be fast
as the results would be readily available in MBC caches after
the initial load from main memory. Our multi-core dynamic
temperature management solution was able to reduce the
overall ALU peak temperature on a multi-core processor by
up to 11.16 degrees (6.7 degrees for 2-core and 6 degrees
for 4-core processors on average) with negligible impact on
performance.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation (NSF) grant CNS-1526687.

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable com-
ponents: the challenges of transistor variability and degrada-
tion,” IEEE MICRO, vol. 25, no. 6, pp. 10–16, 2005.

[2] Y. Huang and P. Mishra, “Vulnerability-aware energy opti-
mization for reconfigurable caches in multitasking systems,”
TCAD, 2018.

[3] D. Brooks and M. Martonosi, “Dynamic thermal management
for high-performance microprocessors,” in HPCA, 2001, pp.
171–182.

[4] H. Hajimiri et al., “Dynamic cache tuning for efficient mem-
ory based computing in multicore architectures,” in VLSID.
IEEE, 2013, pp. 49–54.

[5] S. Paul and S. Bhunia, “Dynamic transfer of computation
to processor cache for yield and reliability improvement,”
TVLSI, vol. 19 (8), pp. 1368–1379, 2011.

Table III: Peak temperature (°C) for a two-core processor using multi-core proactive MBC

Task set No MBC MBC A10 MBC A15 MBC A20 MBC A25
Peak Temp Time Peak Temp Time Peak Temp Time Peak Temp Time Peak Temp Time

mgrid
lucas

72.75
58.49

1.00
1.00

70.97
56.89

1.03
1.07

64.71
55.91

1.06
1.07

66.83
55.35

1.08
1.07

63.64
53.71

1.20
1.08

qsort
vpr

59.22
55.84

1.00
1.00

59.02
55.63

1.02
1.01

57.13
55.52

1.02
1.02

56.01
55.38

1.02
1.02

56.00
55.38

1.02
1.06

toast
dijkstra

62.67
65.16

1.00
1.00

60.66
61.73

1.05
1.10

57.39
61.83

1.05
1.13

57.63
59.28

1.10
1.16

57.31
59.08

1.21
1.17

parser
toast

58.95
62.77

1.00
1.00

56.37
59.82

1.03
1.05

56.12
59.28

1.04
1.05

55.79
58.05

1.05
1.10

55.42
57.38

1.06
1.21

bitcount
swim

79.14
77.75

1.00
1.00

76.75
76.06

1.00
1.00

74.39
75.32

1.01
1.00

72.47
74.05

1.01
1.00

71.88
73.75

1.01
1.01

toast
mgrid

61.92
78.51

1.00
1.00

61.29
72.21

1.05
1.03

60.65
72.97

1.06
1.07

60.10
70.66

1.07
1.08

59.98
67.35

1.21
1.20

Table IV: Peak temperature (°C) for a four-core processor using multi-core proactive MBC

Task set No MBC MBC A10 MBC A15 MBC A20 MBC A25
Peak Temp Time Peak Temp Time Peak Temp Time Peak Temp Time Peak Temp Time

toast
lucas
vpr

parser

62.95
58.82
57.05
58.91

1.00
1.00
1.00
1.00

60.12
56.99
56.42
56.39

1.05
1.07
1.01
1.03

59.81
55.84
56.36
56.03

1.05
1.07
1.02
1.03

58.55
55.46
56.25
55.61

1.10
1.07
1.02
1.03

58.01
54.90
56.19
55.52

1.21
1.08
1.02
1.06

qsort
bitcount

swim
lucas

64.09
81.20
78.90
63.93

1.00
1.00
1.00
1.00

63.91
76.54
75.71
61.45

1.02
1.01
1.00
1.00

62.29
77.19
75.11
61.34

1.02
1.01
1.00
1.00

62.07
74.35
74.58
60.19

1.02
1.03
1.00
1.00

61.17
73.28
74.20
59.03

1.02
1.03
1.01
1.07

[6] H. Hajimiri et al., “Proactive thermal management using
memory based computing,” in NANOARCH. IEEE, 2013,
pp. 110–115.

[7] W. Wang and P. Mishra, “System-wide leakage-aware energy
minimization using dynamic voltage scaling and cache recon-
figuration in multitasking systems,” TVLSI, vol. 20, no. 5, pp.
902–910, 2012.

[8] W. Wang et al., “Energy-aware dynamic reconfiguration
algorithms for real-time multitasking systems,” Sustainable
Computing: Informatics and Systems, vol. 1, pp. 35–45, 2011.

[9] W. Wang and P. Mishra, “Dynamic reconfiguration of two-
level cache hierarchy in real-time embedded systems,” Jour-
nal of Low Power Electronics, vol. 7, no. 1, pp. 17–28, 2011.

[10] S. Charles et al., “Exploration of memory and cluster modes
in directory-based many-core cmps,” in NOCS, 2018.

[11] Y. Huang and P. Mishra, “Reliability and energy-aware cache
reconfiguration for embedded systems,” in ISQED, 2016, pp.
313–318.

[12] X. Qin et al., “TCEC: Temperature and energy-constrained
scheduling in real-time multitasking systems,” TCAD, vol. 31,
no. 8, pp. 1159–1168, 2012.

[13] Y. Lyu and P. Mishra, “A survey of side-channel attacks
on caches and countermeasures,” Journal of Hardware and
Systems Security, vol. 2, no. 1, pp. 33–50, 2018.

[14] H. Jung and M. Pedram, “Stochastic dynamic thermal man-
agement: A markovian decision-based approach,” in ICCD.
IEEE, 2007, pp. 452–457.

[15] R. Cochran and S. Reda, “Consistent runtime thermal predic-
tion and control through workload phase detection,” in DAC,
2010, pp. 62–67.

[16] R. Jayaseelan and T. Mitra, “Dynamic thermal management
via architectural adaptation,” in DAC, 2009, pp. 484–489.

[17] W. Wang and P. Mishra, “PreDVS: Preemptive dynamic
voltage scaling for real-time systems using approximation
scheme,” in DAC, 2010, pp. 705–710.

[18] J. Kong et al., “Recent thermal management techniques for
microprocessors,” ACM Computing Surveys (CSUR), vol. 44,
no. 3, p. 13, 2012.

[19] A. K. Coskun et al., “Proactive temperature balancing for
low cost thermal management in mpsocs,” in ICCAD. IEEE
Press, 2008, pp. 250–257.

[20] H. Hajimiri et al., “Compression-aware dynamic cache recon-
figuration for embedded systems,” Sustainable Computing:
Informatics and Systems, vol. 2, pp. 71–80, 2012.

[21] W. Wang et al., “Dynamic cache reconfiguration and parti-
tioning for energy optimization in real-time multi-core sys-
tems,” in DAC, 2011, pp. 948–953.

[22] A. Settle et al., “A dynamically reconfigurable cache for
multithreaded processors,” Journal of Embedded Computing,
vol. 2, no. 2, pp. 221–233, 2006.

[23] N. Binkert et al., “The gem5 simulator,” CA News, 2011.
[24] S. Li et al., “McPAT: an integrated power, area, and timing

modeling framework for multicore and manycore architec-
tures,” in MICRO, 2009, pp. 469–480.

[25] K. Skadron et al., “Temperature-aware microarchitecture,” in
ISCA, 2003, pp. 2–13.

[26] M. R. Guthaus et al., “Mibench: A free, commercially repre-
sentative embedded benchmark suite,” in WWC, 2001.

[27] J. L. Henning, “Spec cpu2000: Measuring cpu performance
in the new millennium,” Computer, vol. 33, no. 7, pp. 28–35,
2000.

[28] A. KleinOsowski and D. J. Lilja, “Minnespec: A new spec
benchmark workload for simulation-based computer architec-
ture research,” IEEE Computer Architecture Letters, vol. 1,
no. 1, pp. 7–7, 2002.

