
Lightweight Anonymous Routing in NoC based SoCs
Subodha Charles, Megan Logan, Prabhat Mishra

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, Florida, USA

Abstract—System-on-Chip (SoC) supply chain is widely acknowl-
edged as a major source of security vulnerabilities. Potentially
malicious third-party IPs integrated on the same Network-on-
Chip (NoC) with the trusted components can lead to security and
trust concerns. While secure communication is a well studied
problem in computer networks domain, it is not feasible to
implement those solutions on resource-constrained SoCs. In this
paper, we present a lightweight anonymous routing protocol
for communication between IP cores in NoC based SoCs. Our
method eliminates the major overhead associated with traditional
anonymous routing protocols while ensuring that the desired
security goals are met. Experimental results demonstrate that ex-
isting security solutions on NoC can introduce significant (1.5X)
performance degradation, whereas our approach provides the
same security features with minor (4%) impact on performance.

I. INTRODUCTION

The growth of general purpose as well as embedded com-
puting devices has been remarkable over the past decade.
This was mainly enabled by the advances in manufactur-
ing technologies that allowed the integration of many het-
erogeneous components on a single System-on-Chip (SoC).
Manufacturers of modern SoCs typically outsource multiple
intellectual property (IP) cores from potentially untrusted
third-party vendors. Therefore, the trusted computing base
of the SoC should exclude the third-party IPs. In fact,
measures should be taken since malicious third-party IPs
(M3PIP) can launch passive as well as active attacks on the
SoC. Such attacks are possible primarily because the on-
chip interconnection network that connects SoC components
together, popularly known as Network-on-Chip (NoC), has
visibility of the entire SoC and the communications between
IP cores. Previous efforts have developed countermeasures
against stealing information [1], snooping attacks [2], and
even causing performance degradation by launching denial-
of-service (DoS) attacks [3]. This paper presents an effective
solution to provide secure communication in the presence of
M3PIPs operating under the following threat model.

Threat Model: Figure 1 shows an SoC with heterogeneous
IPs integrated on a Mesh NoC. The two nodes marked as S
(source) and D (destination) are trusted IPs communicating
with each other through an M3PIP A. During design time,
a third party IP provider can insert a hardware Trojan in a
router that duplicates packets transferred through its ports and
leaks data to a malicious IP running a program which has
the following capabilities: (1) steal information if data is sent
as plaintext. (2) If data is encrypted and header information
is kept as plaintext, gather packets generated from the same
source and intended to the same destination and launch
complex attacks such as linear/differential cryptanalysis. The
Trojan is able to act upon commands sent by the malicious
program. A similar threat model was explored in [1], [4].

There is a classical trade-off between energy efficiency [5]
and security/trust [6]. While computer networks can accom-

This work was partially supported by the NSF grant SaTC-1936040.

Fig. 1: A typical SoC architecture with a Mesh NoC.

modate strong security techniques, utilizing them in resource-
constrained NoCs can lead to unacceptable overhead. Previous
work on lightweight encryption proposed smaller block and
key sizes, less rounds of encryption and other hardware op-
timizations [7]. These optimizations can weaken the security
guarantees. Furthermore, the header information that is sent as
plaintext allows an M3PIP to gather packets from one commu-
nication session and launch more complex attacks to break the
cipher. The requirement to hide the header information mo-
tivates the need for an anonymous routing scheme. However,
using traditional anonymous routing schemes such as onion
routing [8], [9] is not feasible in resource-constrained NoCs.
Onion routing introduces significant performance overhead
since the sender has to do several rounds of encryption before
sending the packet to the network and each intermediate
router has to perform decryption before forwarding it to the
next hop. Adopting this in resource-constrained NoCs can
lead to unacceptable performance overhead. While optimized
anonymous routing is promising in MANETS (e.g., [10]), it
cannot address the unique communication requirements of an
NoC. To the best of our knowledge, our approach is the first
attempt in developing an anonymous NoC routing protocol.

In this paper, we propose a lightweight Anonymous Routing
protocol for NoCs (ARNoC) that provides the desired security
while staying within the power and performance budgets. As
a result of using ARNoC, an intermediate node can neither
detect the origin nor the destination of a packet. Major
contributions of this paper can be summarized as follows:

• Our proposed anonymous routing hides both source and
destination information making the packets untraceable.

• Our approach is lightweight compared to existing anony-
mous routing methods such as onion routing.

The remainder of the paper is organized as follows. Section II
describes our anonymous routing protocol. Section III presents
the experimental results considering both performance and
security. Finally, Section IV concludes the paper.

II. ARNOC: ANONYMOUS ROUTING FOR NOCS

Our proposed approach, ARNoC, negates the need for multi-
ple layers of encryption and per-hop decryption when trans-
ferring data and as a result, achieves better performance and
energy efficiency. First, we provide an overview of our frame-
work in Section II-A. Next, Section II-B and Section II-C
describe the two major components of ARNoC.



A. Overview

ARNoC has two main phases as shown in Figure 2. When an
IP wants to communicate with another IP, it first completes
the “Route Discovery” phase which sends a packet to discover
the route and distributes some parameters among participants.
This is done using a three-way handshake between the sender
and the destination nodes. The handshake uses three (out of 4)
types of packets sent over the network with the fourth type
being used in the second phase. The four packet types are:

1) RI (Route Initiate) - flooded packet from sender S to
destination D to initialize the communication session.

2) RA (Route Accept) - packet sent from D to accept new
connection with S.

3) RC (Route Confirmation) - confirmation packet sent
from S to D to indicate successful route discovery.

4) DT (Data) - the data packet from S to D that is routed
anonymously through the NoC.

Fig. 2: Our proposed framework (ARNoC) consists of two
phases: route discovery and data transfer.

During the three-way handshake, each router along the routing
path is assigned with random nonces to represent preceding
and following routers. The second phase, “Data Transfer”,
uses these parameters to forward the message through the
route anonymously. Anonymous routing is achieved by using
the random nonces which act as virtual circuit numbers
(VCN). When transferring data packets, the intermediate
routers will only see the VCNs corresponding to the preceding
router and the following router which reveals no information
about the source or the destination.

TABLE I: Notations used to illustrate ARNoC

OPK
(i)
S

one-time public key (OPK) used by S to uniquely
identify an RA packet

OSK
(i)
S the private key corresponding to OPK(i)

S

ρ a random number generated by S
PKD the global public key of D
SKD the private key corresponding to PKD

TPK
(i)
A temporary public key of node A

TSK
(i)
A the private key corresponding to TPK(i)

A

KS−A symmetric key shared between S and A
υA a randomly generated nonce by node A
EK(M) a message M encrypted using the key K

The route discovered at the route discovery stage will remain
the same for the lifetime of a task (until the task execution is
complete), which is considered as one communication session.
In case of context switching and/or task migration, a new
communication session will start and the first phase will be
repeated before transferring data. Each IP in the SoC that uses
the NoC to communicate with other IPs follows the same
procedure. The next two sections describe these two phases
in detail. A list of notations used to illustrate the idea is listed
in Table I. The superscript “i” is used to indicate that the
parameter is changed for each communication session.

B. Route Discovery

The route discovery phase performs a three-way handshake
between the sender S and destination D. This includes broad-
casting the first packet - RI from S with the destination D,
getting a response (RA) from D acknowledging the reception
of RI, and finally, sending RC to complete route setup.
Figure 3 shows an illustrative example of parameters (using
only four nodes) shared and stored during the handshake. The
initial route initiate packet (RI) takes the form:

{RI ‖OPK(i)
S ‖ EPKD

(OPK
(i)
S ‖ ρ) ‖ TPK

(i)
S } (1)

The first part of the message indicates the type of packet
being sent, RI in this case. OPK(i)

S refers to the one-time
public key associated with the sender node. This public key
together with its corresponding private key OSK

(i)
S change

with each new communication session or RI . This change
allows for a particular communication session to be uniquely
identified by these keys, which are saved in its route request
table. ρ is a randomly generated number by the sender that is
concatenated with the OPK(i)

S and then encrypted with the
destination node’s public key PKD as a global trapdoor [11].
Since PKD is used to encrypt, only the destination is able to
open the trapdoor using SKD. Then the TPK(i)

S is attached
to show the temporary key of the forwarding node, which
is initially the sender. The next node, r1, to receive the RI
messages goes through a few basic steps. First, it checks for
the OPK(i)

S in its key mapping table, which would indicate a
duplicated message. Any duplicates are discarded at this step.
Next, r1 will attempt to decrypt the message and retrieve ρ.
Success would indicate that r1 was the intended recipient D.
If not, r1 replaces TPK(i)

S with its own temporary public key
TPK

(i)
r1 and broadcasts:

{RI ‖OPK(i)
S ‖ EPKD

(OPK
(i)
S ‖ ρ) ‖ TPK

(i)
r1 } (2)

r1 also logs OPK(i)
S and TPK(i)

S from the received message
and TSK

(i)
r1 corresponding to TPK

(i)
r1 in its key mapping

table. This information is used later when an RA message is
received from D. D will eventually receive the RI message
and will decrypt using SKD. This will allow D to retrieve
OPK

(i)
S and ρ from EPKD

(OPK
(i)
S ‖ ρ). Then to verify

that RI has not been tampered with, D will compare the
plaintext OPK(i)

S and the recently decrypted OPK(i)
S . If they

are different, RI is simply discarded. Otherwise, D sends an
RA (route accept) message:

{RA ‖ E
TPK

(i)
r2
(E

OPK
(i)
S

(ρ ‖ υD ‖KS−D))} (3)

RA, like RI in the previous message, is there to indicate
message type. D generates a random nonce, υD, to serve
as a VCN and a randomly selected key KS−D to act as a
symmetric key between S and D. D stores υD and KS−D in
its key mapping table. It also makes an entry in its routing
table indexed by υD, the VCN. The concatenation of ρ, υD,
and KS−D is then encrypted with the OPK(i)

S , so that only
S can access that information. Then the message is encrypted
again by TPK

(i)
r2 , r2’s temporary public key, with r2 being

the node that delivered RI to D. Once r2 receives the RA,
it decrypts it using its temporary private key, TSK(i)

r2 , and
follows the same steps as D. It generates its own nonce, υr2,
and shared symmetric key, KS−r2, to be shared with S. Both
the nonce and symmetric key are then concatenated to the



Fig. 3: Steps of the three-way handshake and the status of parameters at the end of the process.

RA message and encrypted by S’s public key, OPK(i)
S , so

that only S can retrieve that data. This adds another layer
of encrypted content to the message for S to decrypt using
OSK

(i)
S . Similar to D, r2 also stores υr2 and KS−r2 in

its key mapping table and routing table. It then finds the
temporary public key for the previous node in the path from
its key mapping table - TPK(i)

r1 and encrypts the message.
The message sent out by r2 looks like:
{RA ‖ E

TPK
(i)
r1
(E

OPK
(i)
S

(E
OPK

(i)
S

(ρ ‖ υD ‖KS−D)

‖ υr2 ‖KS−r2))} (4)

This process is repeated at each node along the path until
the RA packet makes its way back to S. The entire message
at that point is encrypted with TPK

(i)
S , which is stripped

away using TSK
(i)
S . Then S can “peel” each layer of the

encrypted message by OSK
(i)
S to retrieve all the VCNs,

shared symmetric keys, and ρ. ρ is used to authenticate that the
entire message came from the correct destination and was not
changed during the journey. Once S completes authentication
of the received RA packet, S constructs an RC packet:

{RC ‖ υr1 ‖ EKS−r1
(υr2 ‖ EKS−r2

(υD ‖ EKS−D
(ρ)))} (5)

Similar to the case in RA and RI, RC in the packet refers
to the packet type. The rest of the message is layered much
like the previous RA packet. Each layer contains the υ∗ for
each node concatenated with information that is encrypted
with the shared key KS−∗, where * corresponds to r1, r2
or D in our example (Figure 3). The (υ∗, KS−∗) pair was
generated by each node during the RA packet transfer phase
and the values were stored in the key mapping tables as well
as entries indexed by the VCNs created in the routing table.
Therefore, each node can decrypt one layer, store incoming
and outgoing VCNs, and pass it on to the next node to do
the same. For example, r1 receiving the packet observes that
the incoming VCN is υr1. It decrypts the first layer using the
symmetric key KS−r1, that is stored in the key mapping table,
and recovers the outgoing VCN υr2. It then updates the entry
indexed by υr1 in its routing table with the outgoing VCN.
Similarly, each router from S to D builds its routing table.

C. Data Transfer

The path set up can now be used to transfer messages from
S to D anonymously. To transfer a message with sensitive
content, M , from S to D anonymously, S constructs data
transfer (DT) packet {DT ‖ υr1 ‖ EK(M)}. DT , like every
other packet, has an indicator of packet type at the front of
the packet - DT. υr1 is the VCN of the next node. EK(M) is
the encrypted sensitive data. Once r1 receives the DT packet,
it uses its routing table to find the VCN of the next node
and replaces the incoming VCN by the outgoing VCN in
the DT packet. Therefore, the message received by r2 has
the form {DT ‖ υr2 ‖ EK(M)}. Next, r2 repeats the same
process and forwards the packet {DT ‖ υD ‖EK(M)} to D.
Eventually, D will receive the message and decrypt to recover
the plaintext. Using this method, neither an intermediate node
nor an eavesdropper in the middle will be able to see the
routing path of the packet.

III. EXPERIMENTAL RESULTS

A. Performance Evaluation

ARNoC was tested on an 8×8 Mesh NoC-based SoC with 64
IPs using the gem5 cycle-accurate full-system simulator [12].
The NoC was built using the “GARNET2.0” model that
is integrated with gem5 [13]. Each encryption/decryption is
modeled with a 12-cycle delay [7]. Our NoC model imple-
ments a credit-based flow control mechanism that captures
congestion in the NoC during route discovery as well as data
transfer phase and models relevant delays. A 4-port, 4-input
buffer router with a 3-cycle pipeline delay was modeled at
each node. Each link is assumed to take one cycle to transfer
packets between two adjacent routers. Memory access was
modeled with a 300-cycle delay. The delays were chosen to
be consistent with the components in the gem5 simulator.

We ran 4 real benchmarks (FFT, RADIX, FMM, LU) from the
SPLASH-2 benchmark suite [14] to test ARNoC. Out of the
64 cores, 16 IPs were chosen at random and each one of them
instantiated one instance of the task. The packets injected into
the NoC when running the benchmarks were the memory re-
quests/responses. We used 8 memory controllers that provided



the interface to off-chip memory which were placed on the
boundary of the SoC. The memory controller placement we
used adheres to commercial SoC architectures such as Intel’s
Knights Landing (KNL) [15]. These choices were motivated
by the architecture/threat model and the behavior of the gem5
simulator. However, ARNoC can be used with any other NoC
topology and task/memory placement.

Figure 4 shows performance improvement that ARNoC can
provide when running real benchmarks. We compare the
results from ARNoC against two scenarios:

• No-AR: NoC without implementing anonymous routing.
• AR: Onion routing implemented as anonymous routing.

The values in Figure 4 are normalized to the scenario that
consumes the most time. AR shows 70% (69% on average)
increase in NoC delay (total NoC traversal delay for all
packets) and 34% (28% on average) increase in execution time
compared to the No-AR implementation. ARNoC improves
NoC delay by 63% (62% on average) and total execution
time by 30% (25% on average) when compared with AR.
Overall, ARNoC can provide anonymous routing with only
4% performance overhead compared to the NoC that does
not implement anonymous routing (No-AR).

(a) NoC delay

(b) Execution time
Fig. 4: NoC delay and execution time comparison across
different security levels using real benchmarks.

The performance improvement of ARNoC comes from the
fact that once the path has been set up for the communica-
tion between any two IPs, the overhead caused to securely
communicate between the two IPs (data transfer phase) while
preserving route anonymity is small. The notable overhead
occurs at the route discovery phase due to complex crypto-
graphic operations. Once the routing path is setup, packets can
be forwarded from one router to the other by a simple table
look-up. No per-hop encryption and decryption is required
to preserve anonymity. The cost during the route discovery
phase gets amortized over time since the route discovery phase
occurs only once during the lifetime of a task (except context
switching and/or task migration). This leads to a significant
performance improvement compared to the traditional meth-
ods of anonymous routing.

B. Security Analysis

Security of messages: The security of message content is
preserved by using encryption [7]. We are using existing NoC
encryption methods to encrypt secure data of each packet.

Anonymity of nodes in the network: ARNoC preserves the
anonymity of nodes in the network during all of its operational
phases. When the source sends the initial RI packet to initiate

the three-way handshake, it does not use the identity of the
destination. Instead, the source uses the global public key of
the destination (PKD) and sends a broadcast message on the
network. When the RI packet propagates through the network,
each intermediate node saves a temporary public key of its
predecessor. This temporary public key is then used to encrypt
data when propagating the RA packet so that unicast messages
can be sent to preceding nodes without using their identities.
Random nonces and symmetric keys are assigned to each node
during the RA packet propagation which in turn is used by the
RC packet. Data transfer is done by looking up the routing
table that consists of the nonces representing incoming and
outgoing VCNs. Therefore, the identities of the nodes are not
revealed at any point during communication.

Anonymity of routes taken by packets: In addition to pre-
serving the anonymity of nodes, ARNoC also ensures that
the path taken by each packet is anonymous. The routing
table contains only the preceding and following nodes along
the routing path. An M3PIP compromising a router will only
reveal information about the next hop and the preceding hop.
Therefore, the routing paths of all packets remain anonymous.

IV. CONCLUSIONS

Security and privacy are paramount considerations during
electronic communication. Unfortunately, we cannot imple-
ment well-known security solutions from computer networks
on resource-constrained NoC based SoCs. Specifically, these
security solutions can lead to unacceptable performance over-
head in embedded systems as well as IoT devices. In this
paper, we proposed a lightweight anonymous routing protocol
that addresses the classical trade-off between security and
performance. Our anonymous routing protocol achieves supe-
rior performance compared to traditional anonymous routing
methods such as onion routing by eliminating the need for
per-hop decryption. Experimental results demonstrated that
implementation of traditional anonymous routing solutions on
NoC can introduce significant (1.5X) performance degrada-
tion, whereas our approach can provide the desired security
requirements with minor (4%) impact on performance.

REFERENCES

[1] J. Sepúlveda et al., “Towards Protected MPSoC Communication for
Information Protection against a Malicious NoC,” Proc. Comp. Sci.’17.

[2] S. V. R. Chittamuru et al., “Soteria: Exploiting process variations to
enhance hardware security with photonic noc architectures,” DAC, 2018.

[3] S. Charles et al., “Real-time Detection and Localization of DoS Attacks
in NoC based SoCs,” DATE, 2019.

[4] D. M. Ancajas et al., “Fort-nocs: Mitigating the threat of a compromised
noc,” in DAC, 2014.

[5] S. Charles et al., “Efficient cache reconfiguration using machine learning
in noc-based many-core cmps,” TODAES, 2019.

[6] Y. Huang et al., “Scalable test generation for trojan detection using side
channel analysis,” TIFS, 2018.

[7] K. Sajeesh and H. K. Kapoor, “An authenticated encryption based
security framework for NoC architectures,” ISED, 2011.

[8] J. Kong and X. Hong, ANODR: anonymous on demand routing with
untraceable routes for mobile ad-hoc networks. MobiHoc’13, 2013.

[9] W. Yuan, “An anonymous routing protocol with authenticated key
establishment in wireless ad hoc networks,” IJDSN, 2014.

[10] Y. Qin et al., “Olar: On-demand lightweight anonymous routing in
manets,” ICMU, 2008.

[11] J. Katz et al., Handbook of applied cryptography. CRC press, 1996.
[12] N. Binkert et al., “The gem5 simulator,” SIGARCH CA News, 2011.
[13] N. Agarwal et al., “GARNET: A detailed on-chip network model inside

a full-system simulator,” ISPASS, 2009.
[14] S. C. Woo et al., “The splash-2 programs: Characterization and method-

ological considerations,” SIGARCH Computer Architecture News, 1995.
[15] S. Charles et al., “Exploration of memory and cluster modes in

directory-based many-core cmps,” in NOCS, 2018.


